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Abstract. It is shown that the kinetic behaviour of a one-dimensional electron system is
qualitatively different at low and high lattice temperatures. At low lattice temperatures the
interaction has a strong inelastic character for the majority of electrons. As a result the electron
distribution function is to be found from the integro-differential equation. This equation was
solved analytically and we obtain the new distribution functions. We have shown that the
current–voltage characteristic obeys a sublinear behaviour for warm and hot electrons. Within
a wide range of the external electric fieldE the distribution function for the hot electrons has
a sharp anisotropic shape corresponding to the electron streaming regime. The electric-field-
dependences of the hot-electron mobility and the mean energy areE−5/6 andE1/2, respectively.
With increasingE the electron–acoustic-phonon interaction becomes quasi-elastic an the electron
distribution function, which is quasi-isotropic, is described by a differential equation of the
Fokker–Planck type. No runaway effect arises in strong electric fields, the electron mobility
does not depend onE (the ‘second ohmic regime’) and the mean energy increases asE4. In
the opposite case of high lattice temperatures the electron–acoustic-phonon interaction is always
quasi-elastic for a majority of the electrons. The scattering rate decreases when the energy
of the electron increases. This results in a runaway effect for hot electrons in a quantum
wire and superlinear behaviour of the current–voltage characteristic. To stabilize the one-
dimensional electron system it is necessary to take into account the transition of electrons to
the continuous energy spectrum for thick quantum wires or interaction with optical phonons for
thin quantum wires. We have derived general expressions for the distribution functions under
different conditions which are of experimental interest. The theory we have developed can be
generalized for a two- or three-dimensional electron gas subjected to an arbitrary quantizing
potential, as well as to incorporate other scattering mechanisms.

1. Introduction

In [1] we established the basic kinematics of the electron–acoustic-phonon interaction and
in [2] we derived the Boltzmann equation for electrons in terms of symmetrical and
antisymmetrical components of the distribution function and obtained general expressions for
the cases of quasi-elastic and inelastic scattering. In this paper we obtain analytical solutions
of the Boltzmann equation for various circumstances, beginning in section 2 with the case of
inelastic scattering. There are significant difficulties in solving what is an integro-differential
equation and these are discussed in depth. A transformation to an integral equation can be
made under certain circumstances and this allows us to consider some analytically solvable
cases, beginning with the study of warm electrons in section 3, for which the energy
gained from the electric field is small compared with the thermal value. On extending
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the discussion to hot electrons in section 4 we find that the distribution becomes highly
anisotropic, corresponding to electron streaming. Hot electrons in the zero-point lattice are
treated in section 5, in which it is shown that the electron distribution is stabilized under
these conditions. In section 6 we turn to the case of quasi-elastic scattering at high lattice
temperatures and consider solutions of the Boltzmann equation when equipartition holds.
In this case we obtain runaway conditions. Finally, in section 7, we study the macroscopic
characteristics of a 1D hot electron gas. The mathematical details of the calculations are
presented in the corresponding appendices. The previous papers [1, 2] hereafter are referred
to as I and II, respectively.

2. The solution of the Boltzmann equation for inelastic electron–acoustic-phonon
scattering

The electron–acoustic-phonon interaction has an inelastic character for intra-sub-band
scattering within every sub-band if the electron kinetic energy in the sub-band is within
the rangeε‖(κx) < (8m∗s2W0)

1/2 (here and below we use the same notation as in the
previous papers I and II). In the case in which several sub-bands are involved in the
relaxation process, the electrons participate simultaneously in inelastic intra-sub-band and
quasi-elastic inter-sub-band scattering. As a result the peculiarities of the inelasticity of the
electron–acoustic-phonon interaction are smoothed out. However, if the electrons occupy
only the first sub-band and then inelastic scattering is the sole mechanism of relaxation of
the symmetrical and antisymmetrical distribution functions. This is the physical reason why
we will deal with the case of occupation of the first sub-band (ν = ν ′ = 1). It is obvious that
the scattering is inelastic for the majority of electrons even in the thermal equilibrium state
if the lattice temperatureT0 (which defines also the average electron energy in equilibrium)
is within the range given byT0 < (8m∗sW0)

1/2. Therefore, we will investigate the non-
equilibrium kinetics of the electron–phonon system under the conditions defined by

ε‖(κx) < (8m∗s2W0)
1/2 (2.1)

T0 < (8m∗s2W0)
1/2 (2.2)

when electrons occupy only the first sub-band. It is convenient to use the kinetic energyε‖
instead of the total energyε (ε‖ = ε−W1) everywhere in the arguments of the corresponding
functions and to drop the sub-band index for simplicity of notation. Due to equation (2.1)
we can put the form factor equal to unity.

The expression for the antisymmetrical collision operatorÎF−(κx) was obtained in
paper II (see equations (3.4), (3.10) and (3.11) in II). By making use of these equations in the
Boltzmann kinetic equation (2.11) in paper II, we obtain the solution for the antisymmetrical
distribution function in the usual form

F−(κx) = 1

h̄
eExτ(ε‖)

dF0(ε‖)
dκx

. (2.3)

Here the momentum relaxation timeτ(ε‖) is given by

1

τ(ξ‖)
= 1

τ0

1

9(ξ‖)
(2.4)

where

1

τ0
= 42

a(m
∗)1/2T

5/2
0

2
√

2πρh̄4s4
(2.5)
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1

9(ξ‖)
=

∫ ∞

0

Nω

(ξ‖ + ω)1/2
ω2 dω +

∫ ξ‖

0

Nω + 1

(ξ‖ + ω)1/2
ω2 dω (2.6)

Nω = (eω − 1)−1 ξ‖ = ε‖
T0

ω = h̄sq⊥
T0

. (2.7)

The expression for the symmetrical collision operatorÎF0(ε‖) was obtained in paper II
(equation (5.6) in II). Upon inserting the antisymmetrical distribution functionF−(κx) from
equation (2.3) and̂IF0(ε‖) into the Boltzmann equation (2.12) in paper II, we obtain an
equation for the symmetrical distribution functionF0(ξ‖):

−ε2
Eξ

1/2
‖

d

dξ‖

(
ξ

1/2
‖ 9(ξ‖)

dF0(ξ‖)
dξ‖

)
=

∫ ∞

0

ω2

(ξ‖ + ω)1/2
[F0(ξ‖ + ω)(Nω + 1) − F0(ξ‖)Nω] dω

+
∫ ξ‖

0

ω2

(ξ‖ − ω)1/2
[F0(ξ‖ − ω)Nω − F0(ξ‖)(Nω + 1)] dω (2.8)

where we have introduced the dimensionless electric field

ε2
E = E2

x

E2
c

E2
c = m∗T0

2e2τ 2
0

. (2.9)

Equation (2.8) contains only one parameter,ε2
E . This is an integro-differential equation and

there are significant difficulties in solving such equations [3].
By making use of equation (2.6) and changing the variable of integration we can

transform equation (2.8) into the form

ε2
E

d

dξ‖

(
91(ξ‖)

dF0(ξ‖)
dξ‖

)
− F0(ξ‖)

91(ξ‖)
= −

∫ ∞

0
K1(ω, ξ‖)F0(ω) dω (2.10)

where we have introduced the new notations

91(ξ‖) = ξ
1/2
‖ 9(ξ‖) (2.11)

K1(ω, ξ‖) = ξ
1/2
‖ eωK(ω, ξ‖) (2.12)

K(ω, ξ‖) = (ξ‖ − ω)2

ω1/2

∣∣∣∣ 1

eξ‖ − eω

∣∣∣∣ . (2.13)

Note that the expressions in equation (2.6) can be presented in the form

1

9(ξ‖)
= eξ‖

∫ ∞

0
K(ω, ξ‖) dω. (2.14)

The functionK1(ω, ξ‖) in the integrand of the right-hand side of equation (2.10) is the
kernel of the integro-differential equation.

To find the solution of equation (2.10) we will consider it formally as an inhomogeneous
differential equation [4]

D̂F0(ξ‖) = 8(ξ‖) (2.15)

whereD̂ is the differential operator,

D̂ = ε2
E

d

dξ‖
91(ξ‖)

d

dξ‖
− 1

91(ξ‖)
. (2.16)

The inhomogeneous part8(ξ‖) in equation (2.15) is a functional ofF0(ξ‖):

8(ξ‖) = −
∫ ∞

0
K1(ω, ξ‖)F0(ξ‖) dω. (2.17)
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Let us first find the eigenfunctions̃F0(ξ‖) of the differential operatorD̂ with zero
eigenvalues:

D̂F̃0(ξ‖) = 0. (2.18)

Here the tilde uponF0(ξ‖) denotes a solution of the homogeneous differential equation. The
operatorD̂ has two linearly independent eigenfunctions which are given by

F̃±
0 (ξ‖) = exp

(
± 1

εE

∫ ξ‖

0

dξ ′
‖

91(ξ
′
‖)

)
. (2.19)

Hence, the solution of the initial inhomogeneous equation (2.15) can be obtained in the
ordinary way [5] and it reads

F0(ξ‖) = A0F̃
−
0 (ξ‖) + B0F̃

+
0 (ξ‖) − 1

2εE

∫ ∞

0

∣∣∣∣ F̃−
0 (ξ‖) F̃+

0 (ξ‖)
F̃−

0 (ξ ′
‖) F̃+

0 (ξ ′
‖)

∣∣∣∣8(ξ ′
‖) d(ξ ′

‖) (2.20)

whereA0 andB0 are integration constants, which have to be determined from the boundary
conditions to equation (2.15).

For the further transformation of equation (2.20) let us substitute the expression for
8(ξ‖) from equation (2.17) into equation (2.20) and change the order of integration overξ ′

‖
andω. This yields the following expression:

F0(ξ‖) = A0F̃
−
0 (ξ‖) + B0F̃

+
0 (ξ‖) +

∫ ∞

0
R(ω, ξ‖)F0(ω) dω (2.21)

where

R(ω, ξ‖) = 1

2εE

∫ ξ‖

0

∣∣∣∣ F̃−
0 (ξ‖) F̃+

0 (ξ‖)
F̃−

0 (ξ ′
‖) F̃+

0 (ξ ′
‖)

∣∣∣∣K1(ω, ξ ′
‖) d(ξ ′

‖). (2.22)

It is necessary to note that the validity of changing the order of integration in the process
of transformation of equation (2.20) into equation (2.21) requires a special mathematical
justification [6]. In the general case the justification is a very complicated procedure,
especially if it takes into account that we have an unknown functionF0(ω) under the
integral. Here we will assume the validity of this change and later it will be confirmed
rigorously.

The result of the transformation which has been performed above consists of the
transition from an integro-differential equation (2.10) to a pure integral equation (2.21) with
a kernel given by equation (2.22). Equation (2.21) allows us to obtain analytical solutions
for F0(ξ‖) in practically important cases. This will be possibly due to the properties of the
function91(ξ‖). Before that, let us discuss the boundary conditions for equations (2.8) and
(2.21).

First of all, the distribution functionF0(ξ‖) has to be normalized; that is

n0 = 2T
1/2

0

∫ ∞

0
N(ξ‖)F0(ξ‖) dξ‖ (2.23)

wheren0 is the linear electron density in a 1D QWI andN(ξ‖) is the electron density of
states. The second condition is the absence of electrons in the range with infinitely high
energies, namely

F0(ξ‖) → 0 if ξ‖ → ∞. (2.24)

By using the boundary condition from equation (2.24), we obtain the following expression
for constantB0 (for details of the calculation see appendix A):

B0 = 1

2εE

∫ ∞

0

∫ ∞

0
K1(ω, ξ ′

‖)F̃
−
0 (ξ ′

‖)F0(ω) dξ ′
‖ dω. (2.25)
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By substitutingB0 back into equation (2.21) and taking into account equations (2.19) and
(2.22) we obtain

F0(ξ‖) = A0 exp

(
− 1

εE

∫ ξ‖

0

dξ ′
‖

91(ξ
′
‖)

)
+

∫ ∞

0
H(ω, ξ‖)F0(ω) dω. (2.26)

Here

H(ω, ξ‖) = 1

2εE

[H1(ω, ξ‖) + H2(ω, ξ‖)] (2.27)

H1(ω, ξ‖) =
∫ ξ‖

0
K1(ω, ξ ′

‖) exp

(
− 1

εE

∫ ξ‖

ξ ′
‖

dξ ′′
‖

91(ξ
′′
‖ )

)
dξ ′

‖ (2.28)

H2(ω, ξ‖) =
∫ ∞

ξ‖
K1(ω, ξ ′

‖) exp

(
− 1

εE

∫ ξ ′
‖

ξ‖

dξ ′′
‖

91(ξ
′′
‖ )

)
dξ ′

‖. (2.29)

the constantA0 can be calculated from the normalization condition in equation (2.23).
Hence, we have derived the set of equations (2.26)–(2.29) which is very convenient

for the analytical analysis in some special but practically important cases. In the general
case these equations open up a straightforward way to apply numerical procedures because
the integral equation (2.26) is comparably simpler in this respect than is the initial integro-
differential equation (2.28). There are many well-developed special numerical methods
for the solution of integral equations. Here we restrict our investigation to the analytical
solvable cases only.

3. The case of warm electrons under inelastic scattering

The case of warm electrons implies that the electron system is very close to the
thermodynamic equilibrium state. That is, the external electric field is sufficiently small
that

ε2
E � 1. (3.1)

From the mathematical standpoint the case requires more in-depth analysis. The point
is that the small parameterεE is a factor at a derivative of a higher order in the integro-
differential equation (2.8). If we putεE = 0 then we immediately changethe kind of the
equation: the integro-differential equation (2.8) is transformed to the pure integral equation

F
(0)

0 (ξ‖) = 91(ξ‖)
∫ ∞

0
K1(ω, ξ)F

(0)

0 (ω) dω (3.2)

where the upper subscript ‘(0)’ denotes the solution for the particular caseεE = 0.
In the general case the solutionF0(ξ‖) of the initial equation does not necessarily tend

to F
(0)

0 (ξ‖) whenεE → 0. Detailed investigation has to be performed to solve the problem.
Equations of such a kind are singularly perturbed equations [7]. In solving these equations
in the general case it is necessary to apply some special methods. For the integro-differential
equations such methods were developed in [8, 9].

In accordance with [8] let us transform our initial equation (2.15) into the canonical
form
dZ(ξ‖)

dξ‖
= 1

ε2
E

(
−ε2

E

d ln91(ξ‖)
dξ‖

Z(ξ‖) + 1

92
1(ξ‖)

(F0(ξ‖) + 91(ξ‖)8(ξ‖))
)

≡ 3[Z, F0(ξ‖), εE ] (3.3)
dF0(ξ‖)

dξ‖
= Z(ξ‖). (3.4)
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One can show that the functional3[Z, F0(ξ‖), εE ] is a continuous function of the parameter
εE at the special pointεE = 0. Indeed, ifεE → 0 then the numerator in equation (3.3) tends
to zero together with the denominator asε2

E (as will be shown later). The numerator tends
to 9−2

1 (ξ‖)[F0(ξ‖) + 91(ξ‖)8(ξ‖)], where the expression in the square brackets coincides
with equation (3.2) and is equal to zero atF0(ξ‖) = F

(0)

0 (ξ‖). The absence of singularity
of λ[Z, F0(ξ‖), εE ] at the special pointεE = 0 means that the initial equation (2.15) is an
equation of the strictly particular type which is not singularly perturbed despite the presence
of a small parameterεE at a higher derivative in the equation. Both the boundary conditions
from equations (2.23) and (2.24) are in agreement with the solutions of equation (2.15) at
εE = 0, namely of equation (3.2) as well. The latter circumstance is extremely important
for the absence of the singularity of3[Z, F0(ξ‖), εE ]. This is because the solution of
equation (3.2) contains only one multiplying constant and only one boundary condition is
required for its determination. However, ifεE 6= 0 then equation (2.15) includes derivatives
and two boundary conditions are required for the solution. What this means in the general
case is the possibility of a very strong perturbation of the solution of equation (2.15)
if εE → 0 and this solution taken atεE = 0 will not coincide with the solution of
equation (3.2). However, in our strictly particular case the situation is completely different.

By using equation (2.6) we can find the solution of equation (3.2)

F
(0)

0 (ξ‖) = constant× exp(−ξ‖). (3.5)

This is the Maxwellian distribution as it must be for the thermodynamic equilibrium state.
The multiplying constant is determined by the normalization condition from equation (2.23).
As can be seen from equation (3.5), the functionF

(0)

0 (ξ‖) obeys the second boundary
condition from equation (2.24) as well.

Thus, equation (2.10) with boundary conditions from equations (2.23) and (2.24)
represents the regular rather than the singularly perturbed integro-differential equation. For
its solution we can apply ordinary perturbation methods [7]. Another way of looking at it is
to use equation (2.26). For reasons which will be substantiated later we will proceed from
equation (2.26).

Let us introduce the function

J (ξ‖) =
∫ ξ‖

0

dξ ′
‖

91(ξ
′
‖)

. (3.6)

The first term in equation (2.26) will be negligibly small for all electron energies which
satisfy the condition

J (ξ‖) > εE. (3.7)

Figure 1 shows the dependence of the borderline electron energyξ0
‖ on the dimensionless

electric fieldεE in accordance with the equationJ (ξ0
‖ ) = εE . At a givenεE the condition

from equation (3.7) is satisfied ifξ‖ > ξ0
‖ . In the range of electric fields which is defined

by equation (3.1) we haveξ0
‖ � 1 and equation (3.7) holds for all actual electron energies.

Under these conditions we can neglect the first term in equation (2.26) and the equation
resulting from this is the homogeneous integral equation

F0(ξ‖) =
∫ ∞

0
H(ω, ξ‖)F0(ω) dω. (3.8)

First of all note that equation (3.8) is not an equation of Fredholm’s type [6]. This is
because the kernelH(ω, ξ‖) does not satisfy the following condition [6]:∫ ∞

0

∫ ∞

0
H 2(ω, ξ‖) dω dξ‖ < +∞. (3.9)
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Figure 1. The solution of the equationJ (ξ0
‖ ) = εE . The borderlineξ0

‖ (εE) defines the electron
energy region with hot and warm electrons for a fixed electric field.

In fact, the integral overω diverges logarithmically at the lower limit pointω = 0, since
H 2(ω, ξ‖) ∝ 1/ω if ω → 0. This means that we cannot use the ordinary methods [6] for
the solution of the integral equation (3.8) and it is necessary to develop a suitable method.

Within the condition from equations (3.1) and (3.7), let us perform the transformation of
the kernelH(ω, ξ‖). As seen from equations (2.28) and (2.29), we have under the integrals
the products of a slowly varying function ofξ ′

‖, K1(ω, ξ ′
‖), and a very rapidly varying

function of ξ ′
‖, exp[±(J (ξ‖) − J (ξ ′

‖))/εE ]. This exponential function has its maximum
value of unity atξ ′

‖ = ξ‖ and very rapidly decreases to e−1, due to condition (3.7), asξ ′
‖

varies over the narrow interval

1ξ ′
‖ = |ξ‖ − ξ ′

‖| ' εE

(
dJ (ξ‖)

dξ‖

)−1

' ξ‖
εE

J (ξ‖)
� ξ‖. (3.10)

Consequently, the main contribution to the integral in equations (2.28) and (2.29) comes
from the rangeξ ′

‖ which is very close toξ‖, that is, to the upper limit of the integration for
equation (2.28) and to the lower one for equation (2.29). This allows us to apply a special
Laplace method [10] for the calculations of these integrals.

We have restricted our calculations ofH1,2(ω, ξ‖) to the accuracy which is proportional
to the third order of the small parameterεE . With this approximation equations (2.28) and
(2.29) can be written as (for the details of the calculations see appendix B)

Hi(ω, ξ‖) = εE91(ξ‖)
[
K1(ω, ξ‖) + (−1)iεE

d

dξ‖
(91(ξ‖)K1(ω, ξ‖))

+ε2
E

d

dξ‖

(
91(ξ‖)

d

dξ‖
(91(ξ‖)K1(ω, ξ‖))

)]
i = 1, 2. (3.11)

As a result we obtain the following expression for the kernelH(ω, ξ‖) in equation (2.27):

H(ω, ξ‖) = 91(ξ‖)K1(ω, ξ‖) + ε2
E91(ξ‖)

d

dξ‖

(
91(ξ‖)

d

dξ‖
(91(ξ‖)K1(ω, ξ‖))

)
. (3.12)



8560 B K Ridley and N A Zakhleniuk

Equation (3.12) is combined with equation (3.8) to produce the final equation forF0(ξ‖)
under the condition (3.1). This is

F0(ξ‖) = 91(ξ‖)
∫ ∞

0
K1(ω, ξ‖)F0(ω) dω

+ε2
E91(ξ‖)

d

dξ‖

[
91(ξ‖)

d

dξ‖

(
91(ξ‖)

∫ ∞

0
K1(ω, ξ‖)F0(ω) dω

)]
. (3.13)

Let us apply an iterative procedure with respect to the small parametersεE � 1 to the
solution of equation (3.12) and present the distribution functionF0(ξ‖) in the form

F0(ξ‖) = f (0)(ξ‖) + ε2
Ef (1)(ξ‖). (3.14)

On substituting equation (3.14) into equation (3.13) and taking into account equations (3.2)
and (3.5) we obtain

f (0)(ξ‖) = F
(0)

0 (ξ‖) = constant× exp(−ξ‖) (3.15)

f (1)(ξ‖) = 91(ξ)

∫ ∞

0
K1(ω, ξ‖)f (1)(ω) dω

+91(ξ‖)
d

dξ‖

[
91(ξ‖)

d

dξ‖

(
91(ξ‖)

∫ ∞

0
K1(ω, ξ‖)f (0)(ω) dω

)]
. (3.16)

Combining equations (3.15) and (3.16) yields an equation forf (1)(ξ‖)

f (1)(ξ‖) = 91(ξ‖)
∫ ∞

0
K1(ω, ξ‖)f (1)(ω) dω + 91(ξ‖)

d

dξ‖

(
91(ξ‖)

df (0)(ξ‖)
dξ‖

)
. (3.17)

As is seen, equations (3.15) and (3.17) are in complete agreement with the initial
equation (2.10). This fact is important from the mathematical standpoint. The point here
is that equations (3.15) and (3.17) were derived from equation (2.26). As we mentioned
above in the process of the derivation of equation (2.26) itself, we have adopted a few
mathematical assumptions without rigorous justification. For example, we changed the order
of integration in equation (2.21) and the integration and limit calculations in equation (A3)
(in appendix A). The agreement obtained among equations (3.17), (2.26) and (2.10) is a
good justification of the correctness of equation (2.26).

Returning to the inhomogeneous integral equation (3.17), we recall that this is not an
equation of Fredholm’s type due to violation of the condition (3.9). Nevertheless, the
particular form of the energy-dependence of the second term in equation (3.17) allows us,
as will be shown later, to apply the method which is usually used to obtain the solution of
equations of Fredholm’s type. In particular, the Picar method [6] is appropriate here.

In line with the Picar method, let us present the functionf (1)(ξ‖) in the form

f (1)(ξ‖) = f (0)(ξ‖)
∑
i=0

gi(ξ‖) (3.18)

where

gn(ξ‖) =
∫ ∞

0
k(ω, ξ‖)gn−1(ω) dω (3.19)

g0(ξ‖) = 91(ξ‖)
(

91(ξ‖) − d91(ξ‖)
dξ‖

)
(3.20)

k(ω, ξ‖) = K(ω, ξ‖)
/ ∫ ∞

0
K(ω, ξ) dω. (3.21)
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Figure 2. The solution of the integral equation (3.17) in the form of equation (3.18).

The functionk(ω, ξ‖) satisfies the normalization condition∫ ∞

0
k(ω, ξ) dω = 1. (3.22)

The function g0(ξ‖) in equation (3.20) is the sign-changing function as seen from
equations (2.6) and (2.11) and figure 2. Furthermore,|g0(ξ‖)| . 1 within the range of the
actual energy values. Taking into account the condition (3.22) we find from equation (3.19)
that |g1(ξ‖)| � |g0(ξ‖)| within the same range. Figure 2 confirms this inequality. This is
true for all gn(ξ‖) if n > 1 and this is why we can apply the Picar method for the solution
of equation (3.16). As a consequence of these inequalities we need retain in equation (3.18)
only the first term for the actual energy range and we obtain

f (1)(ξ‖) ∼ f (0)(ξ‖)g0(ξ‖) = f (0)(ξ‖)91(ξ‖)
(

91(ξ‖) − d91(ξ‖)
dξ‖

)
. (3.23)

Combination of equations (3.14), (3.15) and (3.23) gives us the final expression for the
distribution functionF0(ξ‖) for the case of warm electrons:

F0(ξ‖) = constant×
[

1 + ε2
E91(ξ‖)

(
91(ξ‖) − d91(ξ‖)

dξ‖

)]
exp(−ξ‖). (3.24)

If we substitute this expression into equations (3.3) and (3.4) we will see that the
expression in square brackets in equation (3.3) tends to zero asε2

E if εE → 0, as it was
assumed to do in the process of investigation of equations (3.3) and (3.4).

It is relevant to introduce the momentum relaxation timeτ(ξ‖) into equation (3.24). By
using equations (2.4), (2.7), (2.9) and (2.11) we obtain

F0(ε‖) = constant×
[

1 + e2E2
xλ

2
ε(ε‖)

T 2
0

(
1 − T0

λε(ε‖)
dλε(ε‖)

dε‖

)]
exp

(
− ε‖

T0

)
(3.25)

where

λε(ε‖) = v(ε‖)τ (ε‖) (3.26)
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is the free path of the electron with energyε‖ and velocityv(ε‖) = (2ε‖/m∗)1/2.
The criterion of validity of equation (3.25) is given by equation (3.1). Taking into

account that the actual energy values for the warm-electron case are within the rangeε‖ & T0

we can write the criterion in the form

eExλε(T0) < T0. (3.27)

Equation (3.27) means that the electrons gain little energy from the electric field compared
with the equilibrium value. In this case the second term in equation (3.25) is small compared
with the first one. The distribution functions in equations (2.3) and (3.25) describe all kinetic
properties of warm electrons in a 1D QWI under inelastic scattering by the acoustic phonons.

4. The case of hot electrons under inelastic scattering

In contradistinction to the foregoing section 3, here we suppose that the 1D electron system
is far from the thermodynamic equilibrium state. The situation of the hot electrons is
realized in a strong electric field when

ε2
E > 1. (4.1)

We suppose as well that the following condition holds for the actual electron energy values:

J (ξ‖) < εE. (4.2)

As one can see from figure 1, equations (4.1) and (4.2) define the energy region
ξ‖ > ξ0

‖ > 1. The majority of electrons will be distributed within this region if the electric
field is sufficiently strong according to equation (4.1).

Let us consider equation (2.26) for this case. The structure of this equation suggests
a main role for the first term within the conditions from equations (4.1) and (4.2). This
means that the symmetric distribution function is equal to

F0(ξ‖) = A0 exp

(
− 1

εE

∫ ξ‖

0

dξ ′
‖

91(ξ
′
‖)

)
. (4.3)

To prove that the function from equation (4.3) is a good approximation for the solution
of equation (2.26) it is necessary to estimate the second term in equation (2.26). Substitution
of the functionF0(ξ‖) into the second term in equation (2.26) gives the expression

1F0(ξ‖) ≡
∫ ∞

0
H(ω, ξ‖)F0(ω) dω = A0

∫ ∞

0
H(ω, ξ‖) exp

(
− 1

εE

∫ ω

0

dω′

91(ω′)

)
dω. (4.4)

For the sake of convenience of comparingF0(ξ‖) and1F0(ξ‖) we can represent1F0(ξ‖)
in the form

1F0(ξ‖) = F0(ξ‖)δ(ξ‖, εE) (4.5)

where

δ(ξ‖, εE) =
∫ ∞

0
H(ω, ξ‖) exp

(
− 1

εE

∫ ω

ξ‖

dω′

91(ω′)

)
dω. (4.6)

By using equations (2.27)–(2.29) we can perform an analytical calculation ofδ(ξ‖, εE).
After some cumbersome and routine transformations we obtain the following strong
inequality:

δ(ξ, εE) �
(

J (ξ‖)
εE

)1/6

exp

(
J (ξ‖)
εE

)
. (4.7)
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The right-hand side of equation (4.7) for the actual values of the electron energy and
electric fields has a value of the order of unity, and consequentlyδ(ξ‖, εE) � 1. By this
is meant that1F0(ξ‖) � F0(ξ‖) and, therefore, equation (4.3) is a good approximation for
the solution of equation (2.26). If we turn back to the initial equation (2.8) we can see
the approximation equation (4.3) means that we neglect the relaxation processes associated
with scattering into theκx state in comparison with the scattering out of theκx state.

Figure 3. The scattering rate as a function of electron energy for inelastic electron–acoustic-
phonon interaction. The full line represents results of equations (2.4)–(2.6); the broken line
corresponds to equation (4.14).

Let us find the antisymmetrical distribution function for these conditions. By substituting
the symmetrical distribution functionF0(ξ‖) from equation (4.3) into equation (2.3), we
obtain after some transformations

F−(κx) = − κxEx

|κx ||Ex |F0(ξ‖). (4.8)

By using equations (4.3) and (4.8) we can calculate the total distribution functionF(κx).
We obtain the following expression:

F(κx) = A0

(
1 − κxEx

|κx ||Ex |
)

exp

(
− 1

εE

∫ ξ‖

0

dξ ′
‖

91(ξ
′
‖)

)
. (4.9)

It is useful to present this expression in another equivalent form. By making use of the
expressions for the electron density state and for the scattering rate from equation (2.4) we
obtain

F(κx) = A0

(
1 − κxEx

|κx ||Ex |
)

exp

(
− πh̄

e|Ex |
∫ ε‖(κx)

0

N(ε′
‖) dε′

‖
τ(ε′

‖)

)
. (4.10)

It follows from equation (4.10) that the energy-dependence of the momentum relaxation
time τ(ξ‖) describes completely the hot electron distribution in a 1D QWI. In our case
τ(ξ‖) is given by equations (2.4)–(2.6). Its energy-dependence is shown in figure 3.
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For some limiting values of the energy one can obtain from these equations the following
expressions:

1

τ(ξ‖)
= 1

τ0

(
3
√

π

4
ζ(5/2) + 4

3
ξ

3/2
‖

)
if ξ‖ < 1 (4.11)

1

τ(ξ‖)
= 1

τ0

(
2ζ(3)

ξ
1/2
‖

+ 16

15
ξ

5/2
‖

)
1 < ξ‖ <

(8m∗s2W0)
1/2

T0
(4.12)

where

ζ(q) = 1

0(q)

∫ ∞

0

xq−1

ex − 1
dx (4.13)

is the zeta function of Riemann.
The first term in the square brackets in equations (4.11) and (4.12) corresponds to the

absorption and the second one to the emission of the acoustic phonons. For the case of the
hot electronsτ(ξ‖) is given by equation (4.12), in which we can neglect the first term. This
means that emission processes give the main contribution to the hot electron momentum
relaxation rate:

1

τ(ξ‖)
= 16

15
τ−1

0 ξ
5/2
‖ . (4.14)

As one can see from figure 3, this is a good approximation forτ−1(ξ‖) if ξ‖ > 1. By
using equation (4.14) we obtain the following expression for the distribution function for
the discussed limiting case:

F(κx) = A0

(
1 − κxEx

|κx ||Ex |
)

exp

(
− 16

45

ξ3
‖

εE

)
. (4.15)

The expressions for the total distribution functionF(κx) from equations (4.10) and
(4.11) show us thatF(κx) is a strongly anisotropic function in momentum space:

F(κx) =
{

2F0(ε‖) if κxEx < 0

0 if κxEx > 0.
(4.16)

Physically this means that all electrons move ballistically inκx-space along straightforward
trajectories in the direction which is opposite to the direction of the electric field (the last
is obvious if we take into account the negative sign of the electron charge). In the steady
state the electron motion is governed by the momentum balance equation

−eExτ(ε̃‖) = h̄κx(ε̃‖). (4.17)

The electric field pushes electrons into the high-energy region, where the increase in energy
results in an increase in the scattering probability in accordance with equation (4.14).
There is some ‘balance’ value of the electron energyε̃‖ which is given by the solution
of equation (4.17) and which depends on the electric fieldEx . When the electron reaches
the energyε̃‖ and momentum ¯hκx(ε̃‖) it emits a 3D acoustic phonon with the wavevector
q ≡ (qx, q⊥) and with the energy ¯hωq = h̄sq. In accordance with longitudinal momentum
conservation,qx = κx(ε̃‖); that is, the electron loses its momentum due to interaction
with the qx component of the phonon wavevectorq. The portion of the phonon energy
h̄s|qx | = (2m∗s2ε̃‖)1/2 which corresponds to this ‘longitudinal’ interaction is very small
compared withε̃‖. In accordance with energy conservation and taking into account the
relationshipq⊥ � |qx |, the electron loses its energy due mainly to the interaction with
the q⊥ component ofq, namely due to emission of the acoustic phonon with the energy
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h̄ωq ' h̄sq⊥ ∼ ε̃‖. Because this is a strongly inelastic interaction the electron loses all
its energy and is scattered down to the sub-band bottom. After this, the process, which is
governed by equation (4.17), will be repeated periodically again.

The rigorous kinetic description of the process is given by the distribution function from
equation (4.10). As one can see, the exponential function includes the momentum balance
equation from equation (4.17) with the average over the density of states.

The strongly anisotropic electron distribution corresponds to the so-called electron
streaming regime. The latter is more familiar in the context of the inelastic interaction
of electrons with optical phonons [11–13]. A regime similar to that discussed here was
investigated in [14] for 1D electrons in a QWI interacting with bulk acoustic phonons
by using the Monte Carlo technique. Our analytical results coincide qualitatively with
those from the Monte Carlo analysis, but there are some quantitive distinctions for the
electric-field-dependence of the kinetic coefficients of a 1D hot-electron gas. We will
explain the origin of the discrepancies later in the corresponding section. The new strongly
anisotropic distribution function given by equation (4.10) for the 1D hot electrons under
inelastic scattering by the acoustic phonons is the main result of this section.

5. The case of hot electrons: the zero-point lattice and quasielasticity

With increasing electric fieldEx the electrons penetrate into the high-energy region where
equation (4.17) has no solution. The inelastic condition for the electron–acoustic-phonon
interaction is broken. It follows from the previous analysis of papers I and II that, if the
electron energy is within the range

(8m∗s2W0)
1/2 < ε‖(κx) < 3

2W0 (5.1)

then the electrons occupy the first sub-band only and the electron–acoustic-phonon
interaction is a quasi-elastic one.

By assuming the same as above for the low-lattice-temperature case (see equation (2.2)),
we can use in the Boltzmann equations (equations (2.11) and (2.12) in paper II) the
expressions for the antisymmetrical operatorÎF−(κx) (equations (3.4) and (3.5) in paper II)
and for the symmetrical operatorÎF0(ε‖) (equation (4.19) in paper II), where it is necessary
to put ν ′ = ν = 1. As a result the antisymmetrical distributionF−(κx) is given by
equation (2.3), where the momentum relaxation timeτ(ε‖) is equal to

1

τ(ε‖)
= w0LxN(ε‖)

∑
q⊥

G2
11(q⊥)

(
q2

⊥ + 8m∗ε‖
h̄2

)1/2

. (5.2)

To obtain equation (5.2) we have used the zero-point-lattice approximation,Nq ' 0,
and have performed the summation overqx . The summation overq⊥ cannot be performed
analytically in equation (5.2) with the form factorG2

11(q⊥) for a rectangular QWI, but a
qualitative picture of the energy-dependence of the momentum relaxation rate can be given
as follows.

If the electron energy is within the range

(8m∗s2W0)
1/2 < ε‖ < W0 (5.3)

we can neglect the second term in the square brackets and obtain

1

τ(ε‖)
' w0LxN(ε‖)

∑
q⊥

G2
11(q⊥)q⊥ ' ε

−1/2
‖ . (5.4)
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If the electron energy is within the range

W0 < ε‖ < 3
2W0 (5.5)

we can neglect the first term in equation (5.2), and obtain

1

τ(ε‖)
' w0Lx

(
8m∗

h̄2

)1/2

N(ε‖)ε
1/2
‖

∑
q⊥

G2
11(q⊥) ' ε0

‖. (5.6)

If we combine equations (4.11), (4.12), (5.4) and (5.6) together, we will see that the
scattering rate has a plateau in the low-energy region, then it increases with energy asε

5/2
‖ ,

passes through a maximum at energyε‖ ' (8m∗s2W0)
1/2, decreases with energy asε

−1/2
‖

up to the energyε‖ ' W0 and saturates in the high-energy regionε‖ > W0. The saturation
of the scattering rate in the high-energy region is a very important feature of the electron
kinetics in a 1D QWI under zero-point-lattice conditions. As we will see later, it results
in the stabilization of the electron distribution and it prevents the runaway effect for the
electrons due to interaction with the acoustic phonons only.

The symmetrical distribution functionF0(ε‖) is governed by the Boltzmann equation
which has the Fokker–Planck form

−e2E2
x

nh̄

1

N(ε‖)
d

dε‖

(
v(ε‖)τ (ε‖)

dF0(ε‖)
dε‖

)
= 4m∗s

h̄
w0Lx

1

N(ε‖)
d

dε‖

[
N2(ε‖)

(
A(ε‖)F0(ε‖) + C(ε‖)

dF0(ε‖)
dε‖

)]
(5.7)

wherev(ε‖) = (2ε‖/m∗)1/2, and the coefficientsA(ε‖) andC(ε‖) are as given in paper II
(see equations (4.10) and (4.20) in II, respectively).

In accordance with our general approach we will obtain the solution of equation (5.7)
for an arbitrary shape of the form factorG2

11(q⊥) which determines the energy-dependence
of the coefficientsA(ε‖), C(ε‖) and the momentum relaxation timeτ(ε‖). The solution of
equation (5.7) is

F0(ε‖) = B0 exp

−
∫ ε‖

0

A(ε′
‖) dε′

‖
h̄q̄(ε′

‖)
4m∗s [eExv(ε′

‖)τ (ε′
‖)]2 + C(ε′

‖)

 (5.8)

whereB0 is the normalization constant and̄q(ε‖) is defined by the relation

q̄(ε‖) =
∑
q⊥

G2
11(q⊥)

(
q2

⊥ + 8m∗ε‖
h̄2

)1/2

. (5.9)

Let us investigate the asymptotic behaviour of the distribution functionF0(ε‖) at large
values ofε‖. We have thatA(ε‖) ∼ ε‖, C(ε‖) ∼ ε

3/2
‖ , τ (ε‖) ∼ ε0 and q̄(ε‖) ∼ ε

1/2
‖ . As a

result we obtain forF0(ε‖)

F0(ε‖) ∼ B0 exp

(
−ε

1/2
‖
E2

x

)
. (5.10)

This distribution function decreases quite rapidly whenε‖ increases. The normalization
integral in equation (2.23) withF0(ε‖) given by equation (5.10) has a finite value. It means
that no runaway effect for the electrons occurs andF0(ε‖) in equation (5.8) is a stationary
solution of the Boltzmann equation for 1D electrons in a QWI interacting with the acoustic
phonons under zero-point-lattice conditions. We will see later that this does not hold for
the equipartition approximation and electrons do run away.
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The physical reason why the electron distribution is stabilized under the conditions
discussed above is as follows. With increasing electron energyε‖ the momentum scattering
rate decreases in accordance with equation (5.2) due to the decreasing electron density
of states. However, following the increase inε‖, the characteristic value of the phonon
wavevectorq̄(ε‖) which participates in the interaction with electrons also increases. By
using equation (5.9) we can write equation (5.2) in the form

1

τ(ε‖)
= w0LxN(ε‖)q̄(ε‖). (5.11)

SinceN(ε‖) ∼ ε
−1/2
‖ and q̄(ε‖) ∼ ε

1/2
‖ , the decrease in the density of states is compensated

by the increase in the characteristic phonon wavevector emitted by the electrons. Note that
here |qx | > q⊥ and electrons emit phonons with wavevectors along the QWI axis. The
momentum scattering rate saturates and gives the distribution function equation (5.10).

It is necessary to point out that the range of electric fieldsEx within which the
distribution F0(ε‖) in equation (5.8) holds is not very large. In accordance with
equation (5.10) electrons increase their energy very rapidly with increasing electric field. As
a result they will populate the second sub-band as well and it must be taken into account.
Here we restrict our investigation to the first-sub-band approximation only, but as it is
obvious from a previous analysis that any occupation of the upper sub-bands can only
improve the situation and prevent the runaway effect for the electrons.

6. Solution of the Boltzmann equation based on equipartition

Let us now investigate the case of high lattice temperature. As was shown in the previous
papers I and II, if the lattice temperature is within the rangeT0 > (8m∗s2W0)

1/2, then both
the equipartition approximation for the acoustic phonons and the quasi-elastic approximation
for the electron–acoustic-phonon interaction are realized if the electron energy is within the
rangeε − Wν > (8m∗s2W0)

1/2.
Accordingly, we will study here the non-equilibrium kinetics of 1D electrons under the

conditions defined by

(8m∗s2W0)
1/2 < ε − Wν <

T 2
0

8m∗s2
(6.1)

T0 > (8m∗s2W0)
1/2. (6.2)

Equation (6.2) and the left-hand side of equation (6.1) show us that the electron–
phonon interaction is quasi-elastic for the majority of electrons even under thermodynamic
equilibrium conditions. Hence, we can ignore the inelastic contribution to the total
relaxation process because this contribution comes from the small energy region within
which ε − Wν < (8m∗s2W0)

1/2 < T0.
Under these conditions the antisymmetrical collision operatorÎF−

ν (κx) is given by
equations (3.4) and (3.6) in paper II, and the symmetric collision operatorÎF0ν(ε) is given
by equations (4.9)–(4.11) in paper II. As will be shown later, it is possible to obtain an
analytical solution of the Boltzmann equation taking into account the occupation of many
sub-bands and this is why we will use here the total electron energyε rather than the kinetic
energyε‖. For the rectangular QWI this problem was solved in [15] and here we will follow
the method proposed in [15].

The solution of the Boltzmann equation for the antisymmetrical functionF−
ν (κx) is

F−
ν (κx) = 1

h̄
eExτν(ε)

dF0ν(ε)

dκx

(6.3)
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where the momentum relaxation timeτν(ε) is equal to

1

τν(ε)
=

∑
ν ′

1

τνν ′(ε)
(6.4)

1

τνν ′(ε)
= 2w0

T0

h̄s
LxNν ′(ε)

∑
q⊥

G2
νν ′(q⊥). (6.5)

We have putεν(κx) = ε in equations (6.3)–(6.5).
By substituting F−

ν (κx) from equation (6.3) into the Boltzmann equation for the
symmetrical distribution function and averaging this equation over the points of constant
energy, as was done in equation (4.1) in paper II, we obtain the Boltzmann equation for the
symmetrical distribution functionF0ν(ε)

−e2E2
x

πh̄

1

N(ε)

d

dε

(
vν(ε)τν(ε)

dF0ν(ε)

dε

)
= 4m∗s

h̄
w0Lx

∑
ν ′

1

Nν ′(ε)

d

dε

[
N2

ν ′(ε)Aνν ′(ε)

(
F0ν ′(ε) + T0

dF0ν ′(ε)

dε

)]
+

∑
ν ′

F0ν ′(ε) − F0ν(ε)

τνν ′(ε)
(6.6)

where we have introduced the notation

vν(ε) =
(

2

m∗ (ε − Wν)

)1/2

. (6.7)

From the mathematical point of view equation (6.6) is a system of second-order
differential equations. The number of equations is equal to the number of occupied sub-
bands.

To solve equation (6.6) we will use the fact that the evaluation of the last term in
equation (6.6) and the penultimate one is approximately equal to

F0ν ′(ε) − F0ν(ε) ' 2m∗s2

T0
F0ν(ε). (6.8)

Physically this means that the function distribution is changed under inter-sub-band electron
scattering even in the elastic approximation. The last term in equation (6.6) describes this
process. The penultimate term in equation (6.6) describes the relaxation of the function
distribution due to the quasi-elastic electron–acoustic-phonon interaction and it is obvious
that this term is proportional to the small parameter of quasi-elasticityδ = 2m∗s2/T0 � 1.

Hence, we can apply perturbation theory with respect to the parameterδ to solve
equation (6.6). The zeroth-order equation is∑

ν ′

F0ν ′(ε) − F0ν(ε)

τνν ′(ε)
= 0. (6.9)

Its solution gives us the equi-occupation condition

F0ν ′ = F0ν(ε) = F0(ε) (6.10)

that is, the distribution function of the electrons with the energyε is the same for all
sub-bands and does not depend on the sub-band indexν.

Substitution of equation (6.10) into equation (6.6) gives us the first-order equation for
F0(ε). To transform this equation into the form of a continuity equation in an energy space
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of the Fokker–Planck type, let us multiply the equation by the density of statesNν(ε) and
sum overν. We obtain

−e2E2
x

πh̄

d

dε

( ∑
ν

vν(ε)τν(ε)
dF0(ε)

dε

)
= 4m∗s

h̄
w0Lx

d

dε

[ ∑
νν ′

Nν(ε)Nν ′(ε)Aνν ′(ε)

(
F0(ε) + T0

dF0(ε)

dε

) ]
. (6.11)

In the process of transformation of the right-hand side of equation (6.11) we have used
the following relationship:∑

νν ′

Nν(ε)

Nν ′(ε)

d

dε
[N2

ν ′(ε)Rνν ′(ε)] = d

dε

∑
νν ′

Nν(ε)Nν ′(ε)Rνν ′(ε) (6.12)

whereRνν ′(ε) is an arbitrary function obeying the property

Rνν ′(ε) = Rν ′ν(ε). (6.13)

In our case we have

Rνν ′(ε) = Aνν ′(ε)

(
F0(ε) + T0

dF0(ε)

dε

)
(6.14)

and that this function satisfies equation (6.13). The solution of equation (6.11) is

F0(ε) = C0 exp

− 1

T0

∫ ε

1 + e2E2
x

4πm∗sw0LxT0

∑
ν

vν(ε
′)τν(ε

′)∑
νν ′

(ε′)Nν ′(ε′)Aνν ′(ε′)


−1

dε′

 (6.15)

whereC0 is the normalization constant.
For a rectangular 1D QWI the coefficientsAνν ′(ε) are given by equation (4.14) in

paper II and the distribution functionF0(ε) can be presented in the form

F0(ε) = C0 exp

[
− 1

T0

∫ ε

dε′
(

1 + (πeExλa)
2

4m∗s2W⊥

×
[ ∑

ν

( ∑
ν ′

γν(ε)γν ′(ε)W⊥Bνν ′

)−1]
×

[
2

∑
νν ′

γν(ε)γν ′(ε)ε +
∑

ν

( ∑
p′

γnp′(ε)(ε − n2W0y)

+
∑
n′

γn′p(ε)(ε − p2W0z)

)
γν(ε) + 1

2

∑
ν

1

]−1)−1]
(6.16)

where we have introduced the following notations:W⊥ = (W0yW0z)
1/2, γν(ε) = (ε −

Wν)
−1/2 andλa is the electron free path in a bulk semiconductor material for the acoustic-

phonon scattering [16]

λa = πh̄4ρs2

42
a(m

∗)2T0
. (6.17)

The coefficientBνν ′ is given by equation (4.15) in paper II.
The distribution function in equations (6.15) and (6.16) describes all the kinetic

properties of 1D electrons in a QWI interacting with 3D acoustic phonons under equipartition
conditions. For a rectangular QWI this problem was originally solved in [15]. However,
comparison of our expression forF0(ε) in equation (6.6) with the analogous expression
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in [15] (equation (18)) shows us that there are some differences between these expressions
and this is why we present hereF0(ε) for this particular case. Unfortunately, the authors
of [15] did not give the Boltzmann equation forF0(ε) in a 1D electron gas of a QWI and
it is difficult to see the origin of the discrepancies between our results.

In the particular case in which the electrons occupy only the first sub-band (ν ′ = ν = 1)
in a QWI of square cross section (Ly = Lz ≡ L⊥, W⊥ ≡ W 0

⊥ = π2h̄2/(2m∗L2
⊥)) we obtain

from equation (6.6)

F0(ε) = C0 exp

[
− 1

T0

∫ ε

dε′
(

1 + ε′2
E

(ε − 2W 0
⊥)2

(3ε − 2W⊥)W 0
⊥

)−1 ]
. (6.18)

Here we have introduced the dimensionless electric field

ε′2
E = 2π2

27

(eExλa)
2

m∗s2W 0
⊥

≡ E2
x

E2
0

(6.19)

where

E0 = 3
√

3

π
√

2

(m∗s2w0
⊥)1/2

eλa

. (6.20)

We can see that, even in this limiting case, there is an additional factorπ2/18 which
decreases the characteristic electric field compared with the similar expression in [15]
(equation (19)).

In the high-energy region, whereε > 2W 0
⊥, the asymptotic behaviour ofF0(ε) in

equation (6.18) is given by

F0(ε) ' C0 exp

[
− W 0

⊥
T0

(
9

πε′
E

)2

ln

(
ε

W 0
⊥

)]
. (6.21)

This distribution function decreases very slowly whenε increases, resulting in the divergence
of the normalization integral in equation (2.23). This means that a runaway effect occurs
for hot 1D electrons in a QWI under these conditions. To stabilize the electron system and
to obtain a steady state electron distribution it is necessary to take into account besides the
acoustic phonons another mechanism of interaction, for example, with the optical phonons.
Another possibility is to take into account a transition of the electrons to the classical range
of energies [15], within which the size of electronic quantization is suppressed and electrons
obey the Davydov–Druyvestyn [17] distribution function.

7. The macroscopic characteristics of a non-equilibrium 1D electron gas

The distribution functions derived in previous sections give us a comprehensive kinetic
description of the 1D electron gas in a QWI. In the general case the calculation of the kinetic
coefficients can be performed via numerical integration of the corresponding expressions
containing these functions.

It is noteworthy that the shape of the quantizing potential is included in the expressions
for the distribution functions in an arbitrary form. The shape of the quantum well defines the
electron energy spectrum in a QWI and the form factor for the electron–phonon interaction.
To calculate the kinetic coefficients it is necessary to specify the shape of the quantizing
potential only in the final stage of the numerical procedure of the integration because we
have obtained the solutions of the Boltzmann equation in a universal form which holds for
any shape of the quantizing potential This is very convenient for a study of the effect of
the quantizing potential parameters on the kinetic coefficients. Here we present analytical
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calculations of the current–voltage characteristics and the electric-field-dependence of the
mean electron energy for some limiting cases in a rectangular QWI.

7.1. Low lattice temperatures

First, we study the case of low lattice temperaturesT0 < (8m∗s2W0)
1/2. The electron current

density is equal for the unit cross section of a QWI

jx = −en0

∑
κx

vx(κx)F (κx)∑
κx

F (κx)
. (7.1)

Substitution ofF(κx) from equation (2.3) into equation (7.1) gives

jx = 2
e2

m∗ n0Ex

∫ ∞

0
ξ

1/2
‖ τ(ξ‖)(dF0(ξ‖)/dξ‖) dξ‖∫ ∞

0
F0(ξ‖)(ξ‖)ξ

1/2
‖ dξ‖

(7.2)

where the momentum relaxation timeτ(ξ‖) is given in equation (2.4).

7.1.1. Warm electrons.The distribution function for the warm electrons is given in
equations (2.3) and (3.24). Making use ofF0(ξ‖) from equation (3.24), we obtain after
integration

jx = en0µe(εE)Ex. (7.3)

Here the mobility of the warm electrons is given by

µe(εE) = µ0(1 − β0ε
2
E) (7.4)

whereβ0 is a general temperature-independent coefficient numerically equal to 0.31 andµ0

is the low-field mobility of 1D electrons at low temperature, namely

µ0 = α0
eτ0

m∗ (7.5)

whereα0 is a general numerical coefficient equal to 0.27.
The expressions in equations (7.3) and (7.4) show that the current–voltage characteristics

obey a sub-linear dependence on the electric field. The mean electron energy is

ε̄‖ =

∑
κx

ε‖(κx)F (κx)∑
κx

F (κx)
= T0

∫ ∞

0
F0(ξ‖)ξ

1/2
‖ dξ‖∫ ∞

0
F0(ξ‖)ξ

−1/2
‖ dξ‖

. (7.6)

UsingF0(ξ‖) from equation (3.24) we obtain the expression for the mean energy of the
warm electrons

ε̄‖ = T0

2
(1 + γ0ε

2
E) (7.7)

whereγ0 is a general numerical coefficient equal to 0.10. The expressions for the coefficients
α0, β0 andγ0 are given in appendix C.
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7.1.2. Streaming. Let us investigate the electron–acoustic-phonon streaming regime. The
distribution function for this case is given in equation (4.15). Substitution ofF(κx) from
equation (4.15) into equation (7.1) gives

jx = en0

(
2T0

m∗

)1/2
Ex

|Ex |

∫ ∞

0
F0(ξ‖) dξ‖∫ ∞

0
F0(ξ‖)ξ

−1/2
‖ dξ‖

= en0

(
2T0

m∗

)1/2
0(1/3)

0(1/6)

(
45

16

|Ex |
Ec

)1/6
Ex

|Ex | .

(7.8)

The mean electron energy for this case is

ε̄‖ = T0
0(1/2)

0(1/6)

(
45

16

|Ex |
Ec

)1/3

. (7.9)

Note that herejx and ε̄‖ depend neither on the shape of the quantizing potential nor on the
lattice temperatureT0 (the last is obvious if we take into account the defintiions ofEc in
equation (2.9) andτ0 in equation (2.5)).

It follows from equation (7.8) that the electron mobilityµe is a decreasing function of
the electric field in the streaming regime:

µe = jx

en0Ex

=
(

2T0

m∗

)1/2
0(1/3)

0(1/6)

(
45

16

|Ex |
Ec

)1/6 1

|Ex | ∝ |Ex |−5/6. (7.10)

The physical explanation of this dependence is that the scattering rate increases with electron
energy, τ−1(ξ‖) ∼ ξ

5/2
‖ , in accordance with equation (4.14). The electric field pushes

electrons into the high-energy region, whereτ(ξ‖) rapidly decreases, resulting in decreasing
electron mobility.

Comparison of the electric-field-dependence of the electron current and the mean
electron energȳε‖ of equations (7.8) and (7.7),jx ∝ |Ex |1/6 and ε̄‖ ∝ |Ex |1/3, with the
corresponding results obtained in [14] for the streaming regime, under whichjx ∝ |Ex |1/5

and ε̄‖ ∝ |Ex |2/5, shows that the dependences are different, as was pointed out in
section 4. The distinctions arise due to the different forms of the energy-dependences of the
scattering rates. The authors of [14] performed a Monte Carlo simulation of the streaming
regime together with a qualitative description of the electron dynamics without solving the
Boltzmann equation. Moreover, they used a semi-empirical parabolic dependence for the
scattering rate in the form

τ−1(ε‖) = 3ε2
‖ (7.11)

where 3 is a constant. Rigorous kinetic analysis gives us the dependenceτ−1(ξ‖) =
(16/15)τ−1

0 ξ
5/2
‖ in equation (4.14). Note that this scattering rate depends neither on the

cross section of a QWI nor on the lattice temperatureT0.
The expression for the mean electron energy equation (7.9) allows one to determine

the range of the electric fields within which the streaming regime occurs. On combining
equations (2.1), (4.1) and (7.9) we obtain

Ec � Ex � 16

45

(
0(1/6)

0(1/2)

)3 (
(8m∗s2W0)

1/2

T0

)3

Ec. (7.12)
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7.1.3. The ohmic hot-electron regime.With increasing electric field the condition
symbolized by the right-hand side of equation (7.12) is broken. The electron–acoustic-
phonon interaction becomes quasi-elastic. The distribution function for this case is given
in equation (5.8).

The analytical calculations of the kinetic coefficients can be performed for electric fields
high enough for it to be possible to omit the coefficientC(ε′

‖) in equation (5.9). Then for
the rectangular QWI we obtain from equation (5.8)

F0(ξ‖) = B0 exp

(
−ξ

1/2
‖

E′2
c

E2
x

)
(7.13)

in agreement with the asymptotic expression in equation (5.10). Here we have introduced
the notation

E′
c = 9

√
2

π

W⊥
T0

(
2m∗s2

T0

)7/4

Ec. (7.14)

Under these conditions the momentum relaxation timeτ(ξ‖) is that given in
equation (5.6). Sinceτ(ξ‖) does not depend onξ‖, equation (7.10) gives after the integration
by parts

jx = en0µeEx (7.15)

whereµe is the electron mobility

µe =
(π

3

)2 eρh̄4s

(m∗)342
aW⊥

. (7.16)

It follows from equations (7.15) and (7.16) that the current–voltage characteristic obeys
a linear dependence on the electric field. This is the ‘second ohmic regime’. The first occurs
at very small electric field|Ex | � Ec, for which the symmetrical distribution function has
the Maxwell–Boltzmann form. With increasing electric fieldEx the electron mobilityµe

decreases following the parabolic law for warm electrons andµe ∝ |Ex |−5/6 for the hot
electrons (see equations (7.4) and (7.10)), reaching a minimum value at the electric field

Ex '
(

(8m∗s2W0)
1/2

T0

)3

Ec (7.17)

(see equation (7.12)). After that there is some increase inµe with Ex (this becauseτ(ε‖)
increases here withε‖ in accordance with equation (5.4)) and, finally,µe saturates (see
equation (7.16)) and the ‘second ohmic regime’ occurs.

For the mean electron energy we obtain from equations (7.6) and (7.13) the following
expression:

ε̄‖ = 2T0

(
Ex

E′
c

)4

. (7.18)

The strong electric-field-dependence ofε̄‖, as ε̄‖ ∝ E4
x , means that, with increasingEx , the

electrons penetrate very rapidly into the high-energy region. The simplified one-sub-band
model is broken and it is necessary to take into account the upper sub-bands or interaction
with optical phonons. Hence, the range of the electric fields within which the dependence
from equations (7.15) and (7.18) applies is quite narrow.
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7.2. High-lattice temperatures

To compare with low-lattice-temperature case, discussed above, with the case of a high
lattice temperature, let us calculate the kinetic coefficients of the 1D electron gas under
the conditionT0 > (8m∗s2W0)

1/2. It was shown in section 6 that a runaway effect for hot
1D electrons occurs at high lattice temperature and hence that it is necessary to take into
account some additional mechanisms of electron energy relaxation. The interaction of the
1D electrons with optical phonons as well as with acoustic phonons was studied in [18]
via Monte Carl simulation and analytically in [19]. The field-dependence of the electron
mobility in a QWI was studied in [15] for the case of transition of the electrons to the
classical range of energies, ignoring the interaction with optical phonons. As was shown
in [19], this situation can be realized in thick QWIs. Here we will follow the method
suggested in [15] and present expressions for the electron mobility and the mean electron
energy in a 1D rectangular QWI with square cross section, ignoring optical phonons.

We obtain for the electron mobility

µe = µ3D
e

π

3

T0

W 0
⊥

1 +
[

9
16

(
2
π

)1/2]
ε′
E

(
W 0

⊥
T0

)1/2

exp

(
− 1

πε′
E

W0
T0

)
1 +

[
30(3/4)

4π

(
9
8

)1/4

ε
′3/2
E

(
T0

W 0
⊥

)1/4

exp

(
− 1

πε′
E

W 0
⊥

T0

)] (7.19)

where

µe = µ3D
e = 4

3

eλa

(2πm∗T0)1/2
(7.20)

is the low-field electron mobility in the 3D case. When the electric field increases, the
relative contribution of the second term in the numerator of equation (7.19) becomes more
important than is the contribution of the second term in the denominator (this is because
W 0

⊥ � T0). Hence, we can drop the second term in the denominator and obtain the following
asymptotic approximation for the shape of the electric-field-dependence:

µe ∝ µ3D
e

π

3

T0

W 0
⊥

[
1 + |Ex | exp

(
− 1

|Ex |
)]

. (7.21)

Equation (7.21) describes a steep rise ofµe with Ex for the electric field range 1� ε′
E 6

2W 0
⊥/T0. This means that the current–voltage characteristics obey a super-linear dependence

on electric field. The physical reason for this is the rise in relaxation time with heating of
the electrons (see equation (6.5)).

At high electric fields, for which both field-dependent terms in equation (7.19) are
important, we can drop the units in the numerator and denominator and obtain

µe ∝ µ3D
e

1

|Ex |1/2
. (7.22)

This dependence corresponds to the situation of a 3D hot electron gas in which the transition
of electrons into the classical range of the energies occurs.

For the mean electron energy we obtained the following expression:

ε̄‖ = T0

2

1 +
[(

3
2π

)2(
9
2

)1/4

0(5/4)

]
ε

′5/2
E

(
W 0

⊥
T0

)1/4

exp

(
− 1

πε′
E

W 0
⊥

T0

)
1 +

[
30(3/4)

4π

(
9
8

)1/4]
ε

′3/2
E

(
T0

W 0
⊥

)1/4

exp

(
− 1

πε′
E

W 0
⊥

T0

) . (7.23)
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The same situation applies here with the relative contributions of the second terms in the
numerator and denominator as it was in equation (7.19).

For the electric fields, when we can omit the second term in the denominator, we obtain

ε̄ ∝ T0

2

[
1 + |Ex |5/2 exp

(
− 1

|Ex |
)]

. (7.24)

This dependence corresponds to a very steep rise ofε̄ with Ex .
For even higher electric fields we can omit units in equation (7.18) and so we obtain

ε̄ ∝ T0|Ex |. (7.25)

This much slower increase in̄ε with Ex corresponds to the 3D hot-electron gas.

7.3. Comparison of temperature regimes

A comparison of the macroscopic characteristics of the 1D non-equilibrium electron gas
at low and high lattice temperatures derived above shows us the qualitatively different
behaviour of their electric-field-dependences. The general physical reason for this is the
existence of the characteristic energyεc = (8m∗s2W0)

1/2 for a 1D electron gas in a QWI
interacting with 3D acoustic phonons.

For a high lattice temperature, one at whichT0 > εc, the electron–acoustic-phonon
interaction has a quasi-elastic character at all values of electric field. The energy loss due
to this interaction is not strong enough to ensure a balance of the energy gained by the
electron system from the external electric field because the scattering rate decreases when
the electron energy increases. As a result the electrons penetrate very rapidly into the high-
energy region, resulting in a steep increase in electron mobility (super-linear current–voltage
characteristics) and mean energy (see equations (7.21) and (7.24)).

For a low lattice temperature, one at whichT0 < εc, the electron–acoustic-phonon
interaction has a strongly inelastic character within a wide electric field range. As a result the
energy loss mechanism is very effective and the momentum relaxation time decreases when
the electron energy increase. This results in a slow increase in the mean electron energy
and a decrease in the electron mobility (sub-linear current–voltage characteristics) when the
electric field increases (see equations (7.9) and (7.4) and (7.10), respectively). For the higher
electric fields, at which the electrons penetrate into the high-energy region, the electron–
acoustic-phonon interaction becomes quasi-elastic. The scattering rate here saturates with
increasing electron energy. As a result a normalized steady state electron distribution exists
and we obtain the ‘second ohmic regime’ in the current–voltage characteristic within a
narrow range of the electric fields.

8. Conclusion

In this paper, and in the previous papers I and II, we have developed a general kinetic
theory of the non-equilibrium electrons in a 1D QWI interacting with the bulk acoustic
phonons for an arbitrary shape of the quantizing potential. Due to the size quantization
of the electron motion a new characteristic energyεc = (8m∗s2W0)

1/2 arises in the theory
(W0 is a quantum energy of the ground electron state). For a GaAs rectangular QWI
with Ly = Lz ≡ L⊥ = 50 Å, m∗ = 0.07me and s = 5.14 × 105 cm s−1, we obtain
W0 = π2h̄2/(m∗L2

⊥) = 430 meV,m∗s2 = 0.01 meV andεc = 6 meV' 70 K. As one can
see,εc corresponds to the actual electron energy region.
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The electron kinetics in a 1D QWI undergoes a crucial change depending on
the relationship between the characteristic energyεc and the lattice temperatureT0.
We investigated here all possible cases that are of physical interest and amenable to
experimental investigation and we derived the expressions for the collision operator for
these cases.

For high lattice temperature, at whichT0 & εc, the electron–acoustic-phonon interaction
has a quasi-elastic character for the majority of electrons. As a result, for the antisymmetrical
collision operator we can apply the electron momentum relaxation time approximation, in
which the energy-dependence of the relaxation time is defined by the energy-dependence
of the electron density of states of equation (6.5). The symmetrical collision operator,
due to the relative smallness of the change in the electron energy in each event, can
be transformed into the differential Fokker–Planck form. The corresponding Boltzmann
equation represents the continuity equation in energy space, equation (6.11). From the
mathematical point of view this is a second-order differential equation and it can be easily
solved, resulting in the distribution function in equation (6.15). The characteristic electric
field E0 for this case is defined in equation (6.20) and it can be presented in the form
E0 = 3

√
3εc/(4π

√
2eλa). The electrons are hot ifEx � E0. For T0 = 80 K and

GaAs parameters,4a = 7 eV, ρ = 5.31 g cm−1, we obtainλa = πh̄4ρs2/[42
a(m

∗)2T0] =
0.95 × 10−3 cm and E0 = 16.5 V cm−1, for the same geometric size of a QWI as
above.

For low lattice temperature, at whichT0 � εc, the behaviour of the electron system
is more complicated compared with that in the high-lattice-temperature case. Within the
wide electric field range the electron–acoustic-phonon collisions have a strongly inelastic
character. The condition need to derive the Fokker–Planck form for the collision operator
is violated and consequently the symmetrical part of the electron–acoustic-phonon collision
operator has the integral form, equation (5.6) in paper II. For the antisymmetrical collision
operator it is possible to use the momentum relaxation approximation with the relaxation
time given by equation (2.4). As a result the corresponding Boltzmann equation has an
integro-differential form. For the low electric fieldEx < Ec this equation can be transformed
into a pure integral equation but not into one of Fredholm’s type. We solved this equation
analytically and obtained the distribution function for the warm electrons. For the high
electric field defined in equation (4.7),Ec � Ex � E∗

c , the electron distribution function
has a strongly anisotropic shape, equation (4.15), corresponding to the streaming regime.
The characteristic fieldE∗

c
∼= 5m∗42

aε
3
c /(2πeρh̄4s4) is given by the right-hand side of the

inequality in equation (4.7) and the other characteristic fieldEc = m∗42
aT

3
0 /(4πeρh̄4s4)

is given in equation (2.9). For the same parameter of a QWI as above and the lattice
temperatureT0 = 4.2 K we obtain Ec ' 0.2 V cm−1 and E∗

c ' 8.6 × 103 V cm−1.
Note that the electric fieldE∗

c does not depend onT0. For electric fieldEx > E∗
c the

electrons penetrate in the high-energy region, the electron–phonon interaction becomes a
quasi-elastic one and the distribution function has a quasi-isotropic form, equations (2.3) and
(5.8). We have also calculated the some macroscopic characteristic of the non-equilibrium
1D electron gas in a QWI for all the above situations and presented here their electric-field-
dependences.

In this paper we have taken into account only the interaction with acoustic phonons
which is responsible for the relaxation both of the electron momentum and of the electron
energy. However, the effect of elastic scattering due to interface roughness or charged
background and remote impurities can easily be incorporated. The same can be done for
the strong inelastic interaction with optical phonons [19] if the lattice temperature is small
compared with the optical phonon energy (for GaAs this is 36.6 meV).
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Appendix A. Derivation of the integration constant B0 in equation (2.21)

The goal of this appendix is to derive the expression for the integration constantB0 in
equation (2.21). We will use for this the second boundary condition from equation (2.24).

On substitutingF0(ξ‖) from equation (2.21) into equation (2.24) we obtain

lim
ξ‖→∞

F0(ξ‖) = A0 lim
ξ‖→∞

F̃−
0 (ξ‖) + B0 lim

ξ‖→∞
F̃+

0 (ξ‖) + lim
ξ‖→∞

∫ ∞

0
H(ω, ξ‖)F0(ω) dω. (A1)

The function9−1
1 (ξ‖) determines the energy-dependences ofF̃±

0 (ξ‖) and, in accordance
with equation (2.6),9−1

1 (ξ‖) increases with energyξ‖. Taking into account equation (2.19)
this gives

lim
ξ‖→∞

F̃−
0 (ξ‖) = 0.

Note that it would be incorrect to putB0 = 0 due to the infinitely increasing limξ‖→∞ F̃+
0 (ξ‖)

in equation (A1). To see this let us substituteH(ω, ξ‖) from equation (2.22) into
equation (A1) and re-write equation (A1) in the form

lim
ξ‖→∞

F̃+
0 (ξ‖)

(
B0 − lim

ξ‖→∞
1

2εE

∫ ∞

0
dω F0(ω)

∫ ξ‖

0
K1(ω, ξ ′

‖)F̃
+
0 (ξ ′

‖) dξ ′
‖

)
+ lim

ξ‖→∞
F̃+

0 (ξ‖)
1

2εE

∫ ∞

0
dω F0(ω)

∫ ξ‖

0
K1(ω, ξ ′

‖)F̃
−
0 (ξ ′

‖) dξ ′
‖ = 0. (A2)

To calculate the limit in the second term in equation (A2) it is necessary to change the order
of the operation of limit and integration. It gives for the second term

lim
ξ‖→∞

F̃+
0 (ξ‖)

1

2εE

∫ ∞

0
dω F0(ω)

∫ ξ‖

0
K1(ω, ξ ′

‖)F̃
−
0 (ξ‖) dξ ′

‖

= 1

2εE

∫ ∞

0
dω F0(ω) lim

ξ‖→∞

(
F̃+

0 (ξ ′
‖)

∫ ξ‖

0
K1(ω, ξ ′

‖)F̃
−
0 (ξ ′

‖) dξ ′
‖

)
= 1

2εE

∫ ∞

0
dω F0(ω) lim

ξ‖→∞

(
F̃+

0 (ξ ′
‖)

∫ ξ‖

0

(ξ ′
‖ − ω)2

(ξ ′
‖ω)1/2

∣∣∣∣ 1

eξ ′
‖ − eω

∣∣∣∣F̃−
0 (ξ ′

‖) dξ ′
‖

)
(A3)

where we have used the expression forK1(ω, ξ ′
‖) from equation (2.12).

Inasmuch as the functioñF+
0 (ξ‖) is a growing function ofξ‖ it is evident that the main

contribution to the integral in parentheses comes from the region with very large values of
ξ ′
‖. Then we obtain for the limit the following estimation:

lim
ξ‖→∞

(
F̃+

0 (ξ‖)
∫ ξ‖

0

(ξ ′
‖ − ω)2

(ξ ′
‖ω)1/2

∣∣∣∣ 1

eξ ′
‖ − eω

∣∣∣∣F̃−
0 (ξ ′

‖) dξ ′
‖

)
' 1

ω1/2
lim

ξ‖→∞

(
F̃+

0 (ξ‖)
∫ ξ‖

0
ξ

′3/2
‖ e−ξ ′

‖ F̃−
0 (ξ ′

‖) dξ ′
‖

)
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<
1

ω1/2
lim

ξ‖→∞
[F̃+

0 (ξ‖)(F̃−
0 (ξ‖)ξ

3/2
‖ e−ξ‖)ξ‖]

= 1

ω1/2
lim

ξ‖→∞
(ξ

5/2
‖ e−ξ‖) = 0. (A4)

The means that the limit in equation (A3) is equal to zero as well and the same is true for
the last term in equation (A2). Then the first term in equation (A2) can be put equal to
zero if and only if the expression in parentheses is equal to zero. This gives the following
expression forB0:

B0 = 1

2εE

∫ ∞

0

∫ ∞

0
K1(ω, ξ ′

‖)F̃
−
0 (ξ ′

‖)F0(ω) dξ ′
‖ dω (A5)

which is used in equation (2.25).

Appendix B. Application of the Laplace method to the transformation of the kernel
in the integral equation (3.8)

Let us transform the functionH1(ω, ξ‖) in equation (2.28). Since the functionK1(ω, ξ ′
‖)

has a special pointξ ′
‖ = ω, see figure 4, where the derivative dK1(ω, ξ ′

‖)/dξ ′
‖ suffers a

discontinuity, we presentH1(ω, (ξ‖) in the form

H1(ω, ξ ′
‖) = θ(ξ‖ − ω)

[ ∫ ω

0
K ′

1(ω, ξ ′
‖) exp

(
−ϕ(ξ ′

‖)

εE

)
dξ ′

‖

+
∫ ξ‖

ω

K ′′
1 (ω, ξ ′

‖) exp

(
−ϕ(ξ ′

‖)

εE

)
dξ ′

‖

]
+θ(ω − ξ‖)

∫ ξ‖

0
K ′

1(ω, ξ ′
‖) exp

(
−ϕ(ξ ′

‖)

εE

)
dξ ′

‖ (B1)

whereθ(z) is the Heaviside step function and

K1(ω, ξ ′
‖) =

{
K ′

1(ω, ξ ′
‖) ξ ′

‖ 6 ω

K ′′
1 (ω, ξ ′

‖) ξ ′
‖ > ω

(B2)

ϕ(ξ ′
‖) =

∫ ξ‖

ξ ′
‖

dξ ′
‖

91(ξ
′
‖)

= J (ξ‖) − J (ξ ′
‖). (B3)

The functionsK ′
1(ω, ξ ′

‖) and K ′′
1 (ω, ξ ′

‖) are the smooth functions ofξ ′
‖ without disruption

of the derivatives. Under the integrals in equation (B1) we have products of the slowly
changing functionsK ′

1(ω, ξ ′
‖) andK ′′

1 (ω, ξ ′
‖) and rapidly changing exp(−ϕ(ξ ′

‖)/εE).
In accordance with the Laplace method [10], to calculate the integrals it is necessary to

perform the integration by parts in equation (A1) by introducing new variables:

u = dϕ(ξ ′
‖)

dξ ′
‖

[K ′
1(ω, ξ ′

‖), K
′′
1 (ω, ξ ′

‖)]

dv = exp

(
−ϕ(ξ ′

‖)

εE

)
dϕ(ξ ′

‖)

dξ ′
‖

dξ ′
‖.

(B4)

Taking into account the inequality from equation (3.7), we obtain after some transformations
during the process of the integration by parts the following expression forH1(ω, ξ‖):

H1(ω, ξ‖) = εE

(
dJ (ξ‖)

dξ‖

)−1

K1(ω, ξ‖) − εE

∫ ξ‖

0
exp

(
−ϕ(ξ ′

‖)

εE

)
d

dξ ′
‖

[K1(ω, ξ ′
‖)91(ξ

′
‖)] dξ ′

‖.

(B5)
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By repeating the same algorithm twice we obtain the expression

H1(ω, ξ‖) = εE

(
dJ (ξ‖)

dξ‖

)−1

K1(ω, ξ‖)

−ε2
E

(
dJ (ξ‖)

dξ‖

)−1 d

dξ‖

[(
dJ (ξ‖)

dξ‖

)−1

K1(ω, ξ‖)
]

+ ε3
E

(
dJ (ξ‖)

dξ‖

)−1

×
∫ ξ‖

0
exp

(
−ϕ(ξ ′

‖)

εE

)
d

dξ ′
‖

[
91(ξ

′
‖)

d

dξ ′
‖

(
91(ξ

′
‖)

d

dξ ′
‖

[91(ξ
′
‖)K1(ω, ξ ′

‖)]
)]

dξ ′
‖.

(B6)

As one can see from equation (A6), each foregoing term is smaller than each following
one by a factorεE/J (ξ‖) � 1. By this is meant that equation (A6) is a presentation of
H1(ω, ξ‖) in the form of an asymptotic expansion in the parameterεE/J (ξ‖). The next term
in equation (A6) after the integration by parts will have the order(εE/J (ξ‖))4 � 1. Hence,
within a factor(εE/J (ξ‖))3 we obtain the expression forH1(ω, ξ‖)

H1(ω, ξ‖) = εE91(ξ‖)K1(ω, ξ‖) − ε2
E91(ξ‖)

d

dξ‖
[91(ξ‖)K1(ω, ξ‖)]

+ε3
E91(ξ‖)

d

dξ‖

(
91(ξ‖)

d

dξ‖
[91(ξ‖)K1(ω, ξ‖)]

)
(B7)

in which equation (3.6) was taken into account namely that dJ (ξ‖)/dξ‖ = 9−1
1 (ξ‖).

Figure 4. The dependence ofK1(ω, ξ‖) on ξ‖ for the particular caseω = 1.

By applying the same algorithm toH2(ω, ξ‖) from equation (2.29) we obtain the
expression

H2(ω, ξ‖) = εE91(ξ‖)K1(ω, ξ‖) + ε2
E91(ξ‖)

d

dξ‖
[91(ξ‖)K1(ω, ξ‖)]

+ε3
E91(ξ‖)

d

dξ‖

(
91(ξ‖)

d

dξ‖
[91(ξ‖)K1(ω, ξ‖)]

)
. (B8)

The expressions forH1,2(ω, ξ‖) are used in equation (3.11).
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Appendix C. Coefficientsα0, β0 and γ0 for warm electrons

On substituting the distribution functionF0(ξ‖) from equation (3.24) andτ(ξ‖) from
equation (2.4) into equations (7.2) and (7.6) we obtain for the current density and the
mean electron energy, respectively

jx = 2
e2τ0

m∗ n0Ex

B0 + ε2
EB1

A0 + ε2
EA1

(C1)

ε̄‖ = T0
C0 + ε2

EC1

A0 + ε2
EA1

(C2)

where

A0 =
∫ ∞

0
ξ

−1/2
‖ e−ξ‖ dξ‖ = √

π (C3)

A1 =
∫ ∞

0
ξ

−1/2
‖ g0(ξ‖) e−ξ‖ dξ‖ (C4)

B0 =
∫ ∞

0
91(ξ‖) e−ξ‖ dξ‖ (C5)

B1 =
∫ ∞

0

d91(ξ‖)
dξ‖

g0(ξ‖) e−ξ‖ dξ‖ (C6)

C0 =
∫ ∞

0
ξ

−1/2
‖ e−ξ‖ dξ‖ =

√
π

2
(C7)

C1 =
∫ ∞

0
ξ

−1/2
‖ g0(ξ‖) e−ξ‖ dξ‖. (C8)

The functions91(ξ‖) and g0(ξ‖) are given in equations (2.11) and (3.20), respectively.
Taking into account that for the warm electronsε2

E � 1, we obtain from equations (C1)
and (C2)

jx = α0
e2τ0

m∗ n0Ex(1 − β0ε
2
E) (C9)

ε̄‖ = T0

2
(1 + γ0ε

2
E) (C10)

where

α0 = 2√
π

B0 β0 = 1√
π

(
A1 − √

π
B1

B0

)
γ0 = 1√

π
(2C1 − A1).

Numerical integration in equations (A4)–(A6) and (A8) results in the following values:
A1 = −0.0584, B0 = 0.2415, B1 = −0.0837 andC1 = 0.0512. This givesα0 = 0.27, β0 =
0.31 andγ0 = 0.10. These values were used in equations (7.4), (7.5) and (7.7).
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